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1 About data sets used in this work

1.1 ENCODE samples

All the ENCODE samples were downloaded from ENCODE website:
http://hgdownload.cse.ucsc.edu/goldenPath/hgl9/encodeDCC/wgEncodeCshlLongRnaSeq/

These are the names of the fastq files for each of the samples we used in the analysis (paired-end
sequencing):

Bcells (CD20)
Harbor_Cd20_Pap_Rp?2

e wgEncodeCshlLongRnaSeqCd20CellPapFastqRd1Rep2.fastq.tgz

e wgEncodeCshlLongRnaSeqCd20CellPapFastqRd2Rep2.fastq.tgz

Harbor_Cd20_-Pam_Rp1-2
For this condition, we summed the counts from replicates 1 and 2 in order to get comparable
sequencing depth for both protocols (Pap and Pam):

e wgEncodeCshlLongRnaSeqCd20CellPamFastqRd1Repl.fastq.tgz
¢ wgEncodeCshlLongRnaSeqCd20CellPamFastqRd2Repl.fastq.tgz
e wgkncodeCshlLongRnaSeqCd20CellPamFastqRd1Rep2.fastq.tgz

e wgkncodeCshlLongRnaSeqCd20CellPamFastqRd2Rep2.fastq.tgz

Monocytes: CD14
Harbor_Monocdl4_Pap_Rp2

e wgkncodeCshlLongRnaSeqMonocd14CellPapFastqRd1Rep2.fastq.tgz
e wgEncodeCshlLongRnaSeqMonocd14CellPapFastqRd2Rep2.fastq.tgz

Harbor_Monocd14-Pam_Rp1-2
For this condition, we summed the counts from replicates 1 and 2 in order to get comparable
sequencing depth for both protocols (Pap and Pam):

e wgEncodeCshlLongRnaSeq/wgEncodeCshlLongRnaSeqMonocd14CellPamFastqRd1Repl.fastq.tgz
e wgEncodeCshlLongRnaSeq/wgEncodeCshlLongRnaSeqMonocd14CellPamFastqRd2Rep].fastq.tgz
e wgEncodeCshlLongRnaSeq/wgEncodeCshlLongRnaSeqMonocd14CellPamFastqRd1Rep2.fastq.tgz

e wgEncodeCshlLongRnaSeq/wgEncodeCshlLongRnaSeqMonocd14CellPamFastqRd2Rep2.fastq.tgz


http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeCshlLongRnaSeq/

2 Quality control of expression data

2.1 Biotypes.
2.1.1 “Biotype detection” plots

The plots in this section can be generated independently for each sample or condition of a given
experiment. However, if only two samples or conditions are to be compared, the “Biotype com-
parison” plots (Figures and [S3b|) can also be obtained to facilitate the interpretation and

comparison of these results.
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(a) Biotype detection. Pap protocol. (b) Biotype detection. Pam protocol.

Figure S1: Biotype distribution. Data: B-cells (Cd20) from ENCODE project. Grey bars
represent the percentage of each biotype in the reference genome. Stripped color bars illustrate the
proportion of genes in the genome, by biotype, that are detected in the sample. Solid color bars
give the percentage of each biotype within genes detected in the sample. Bars in the left hand side
of the vertical green line are associated to numbers in Y left axis. Bars in the right hand side of
the vertical green line are associated to numbers in Y right axis.
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(a) Biotype detection. Pap protocol.

Figure S2: Biotype distribution. Data: Monocytes (CD1/4-positive cells from human leukaphere-
sis production) from ENCODE project. Grey bars represent the percentage of each biotype in the
reference genome. Stripped color bars illustrate the proportion of genes in the genome, by biotype,
that are detected in the sample. Solid color bars give the percentage of each biotype within genes
detected in the sample. Bars in the left hand side of the vertical green line are associated to num-
bers in Y left axis. Bars in the right hand side of the vertical green line are associated to numbers

in Y right axis.

14 27 41 55 68 82

0

%features

60

50

40

30

20

10

pr

Harbor_Monocd14_Pam_Rp1-2

% in genome
detected
W % in sample

14 27 41 55 6.8 8.2

Pespstastosemengenasenpenees
-gc‘rmén:n:en:w VOO SVD VOS5V DD
OgSZEg %g‘a“oc&&mlcfécggg RENE
8=t a8 5| Sg gbUgE"'L’P,: Og
5 ] 7 8 gﬁ gg OOHoY §€DP_:
S 2 5 % 98 _Cgi ]
A B
5] [O)] 3 xa o xO
e =0 Sk =
[=% (] =
E =
s o
& =

(b) Biotype detection. Pam protocol.
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“Biotype comparison” and “Biotype expression” plots
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(b) Biotype detection. Pam protocol.

(a) Biotype detection. Pap protocol.
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(d) Biotype expression range. Pam protocol.

(c) Biotype expression range. Pap protocol.

Data: B-cells (Cd20) from ENCODE project. Figures
[S3bl Grey bars represent the percentage of each biotype in the reference genome. Stripped color

Figure S3: Biotype distribution.

bars illustrate the proportion of genes in the genome, by biotype, that are detected in the sample.
Solid color bars give the percentage of each biotype within genes detected in the sample. Figures
S3chS3dl Expression values (Y axis) are given in counts per million of sequencing reads (CPM).
Numbers in the upper part of the plot are the number of genes, by biotype, that are represented

in each boxplot.



2.1.3 Output of explo.plot() function when asking for “Biotype comparison” plot

B-cell samples

"Percentage of protein_coding biotype in each sample:"
Harbor_Cd20_Pap_Rp2 Harbor_Cd20_Pam_Rpl-2
61.0717 54.0017

"Confidence interval at 95} for the difference of percentages:
Harbor_Cd20_Pap_Rp2 - Harbor_Cd20_Pam_Rpil-2"

6.4936 7.6464
"The percentage of this biotype is significantly DIFFERENT for these two samples
(p-value = 8.721e-128 )."

Monocyte samples

"Percentage of protein_coding biotype in each sample:"

Harbor_Monocd14_Pap_Rp2 Harbor_Monocd14_Pam_Rpl-2

65.2175 57.1911

"Confidence interval at 95} for the difference of percentages:
Harbor_Monocd14_Pap_Rp2 - Harbor_Monocd14_Pam_Rp1-2"

7.4587 8.5942

"The percentage of this biotype is significantly DIFFERENT for these two samples
(p-value = 8.094e-169 )."
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Figure S4: Number of differentially expressed genes by NOISeg-sim between B-cells and monocytes
ENCODE data when using PolyA+ (pink) or Poly- (blue) extraction method.
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Figure S5: Percentage of each biotype within non-common differentially expressed genes between
B-cells and monocytes ENCODE data when using PolyA+ or Poly- extraction method.



2.2

GLOBAL (59573)

Sequencing depth and quantification of expression.
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Figure S6: Saturation plot for two tumoral samples.

2.3 Sequencing biases.

2.3.1 Confidence Intervals for the median of M values

Data: F. ozysporum data

This is the output generated by NOISeq function to check RNA composition bias:

Warning: 4197 features with O counts in all samples are to be removed for this analysis.

Reference sample is: wt_B_30_37_1
Confidence intervals for median of M:

0.83%
wt_B_30_37_2 -0.153815574418935
wt_M_30_37_1 -0.370808505381945

wt_M_30_37_2 -0.36066807247099

99.17% Diagnostic Test
-0.108393535088251 FAILED
-0.370808505381945 FAILED
-0.29410617912117 FAILED

Diagnostic test: FAILED. Normalization is required to

correct this bias.



3 Normalization

Plot Diagnostic test thresholds Normalization method or R package

Length bias p-value < 0.05 and R%2 > 70% | RPKM (NOISeq), EDASeq, RNASe-
gBias, cqn

GC content p-value < 0.05 and R? > 70% | EDASeq, RNASeqBias, cqn

RNA composition | Adjusted p-value < 0.05 TMM (edgeR, NOISeq), Quantiles,
Upper Quartile (EDASeq, NOISeq),
DESeq, DESeq2

4 Filtering out low count features

It has been often argued that, in RNA-seq, expression estimation for low count genes is less reliable
because read counts could have been assigned by chance [1,2]. Thus, excluding features with low
counts may improve the results of statistical analyses because the level of noise is reduced. However,
the best procedure to filter these low count features has not yet been decided.

These filtering procedures have not been implemented in statistical packages for RNA-seq data
but it is a common practice simply removing genes with total counts for all the samples lower than
a certain cutoff, e.g. 10 counts [3-5]. This approach does not take into account the sequencing
depth of the experiment to decide the cutoff, so genes with a relatively high expression in one
of the conditions could be ignored. A better method is the procedure described in the edgeR R
package User’s Guide in the Bioconductor repository. The authors proposal consists of keeping
genes with counts per million reads (CPM) above a given threshold in at least as many samples as
the number of samples per condition. By setting the cutoff for the counts per million instead of
the raw counts, it can be assured that no genes with a high relative expression are eliminated. In
the NOISeq package, we implemented three different filtering procedures: CPM method, Wilcoxon
test and Proportion test, that are described in detail in the next sections.

4.1 CPM method

Let z; be the number of raw counts of gene g in sample s. As in edgeR proposal, counts for each
S

x
sample are transformed to counts per million reads (CPM): CPM; = 10° x Zigs' A value for CPM
x
g
g
under which a feature is considered to have low counts must be previously set (cpm). By default,
CPM method takes a cutoff of cpm = 1. If there are S samples in a given experimental condition,
the cutoff for that condition would be cpm x S. A gene g is filtered out if the sum of CPM values
across all samples in the same condition is below the condition cutoff ( )} CPM; < cpm x S) for
S

all the experimental conditions.

It is also possible to remove genes that present inconsistent expression values in any of the ex-
perimental conditions with the CPM method. A cutoff for the coefficient of variation per condition
cv has to be set a priori. Then, a gene g will be filtered out either if it has a total CPM value per
condition of less than cpm x S or a coefficient of variation per condition higher than the cv cutoff
for all the conditions.



4.2 Wilcoxon test

Although the CPM method takes the experimental design and the variability per condition into
account, it has the drawback of having to decide the cutoffs to use for both the CPM and the
coefficient of variation. Hence, we propose the Wilcoxon test to identify those genes with a CPM
value median per condition that is significantly higher than 0. Thus, the hypothesis to test for each
gene and condition is Hy : m = 0 versus H; : m > 0, where m is the median of CPM values per
condition. To be more conservative, no multiple testing correction was applied in order to retain
as many genes as possible. Genes with a p-value higher than 0.05 in all the conditions are filtered
out.

By using the Wilcoxon method, genes with inconsistent values across replicates within the same
condition or with a low median expression value tend to be removed. However, this non-parametric
procedure is only recommended when the number of replicates per condition is at least 5.

4.3 Proportion test

The proportion test aims to be the alternative to the Wilcoxon test when few replicates per condition
are available. This method requires a cutoff to be set for CPM (cpm), but not for the coefficient of
variation. It is based on the idea that read counts for a given gene follow a binomial distribution
where the number of trials n is the sequencing depth, and the probability p, is the probability of
expression for that gene under a given experimental condition, which is unknown. Thus, in this
case, Hy : p = pg is tested versus Hj : p > pg. Since it is not possible to use pg = 0 in a binomial
proportion test, we define pg = cpm/10°. If several replicates are available for an experimental
condition, we sum across replicates (v = ) ;) and use this single value as the observed binomial
S

variable. Then, n = ) x,. Again, to be conservative, the raw p-values are used and genes with a

g
p-value higher than 0.05 in all conditions are filtered out.

4.4 Comparing filtering methods

We applied the three NOISeq filtering procedures and edgeR proposal to F. ozysporum (with
2 replicates per condition) and Prostate Cancer data (with 11 and 12 replicates per condition)
to illustrate the similarities and differences of the methods. We set a cutoff of cpm = 1 for CPM
method, Proportion test, and edgeR approach. Because of the number of replicates, the Proportion
test was only applied to F. oxysporum and the Wilcoxon test was only applied to Prostate Cancer
data. We considered a coefficient of variation of 500 for the CPM method to cancel this filter and
make this method more comparable to edgeR approach. According to the number of replicates per
condition in each data set, genes with CPM higher than 1 in at least 2 or 10 samples for each data
set respectively were retained in the edgeR approach.

Both data sets originally contained 18066 (F. oxysporum) and 59573 (Prostate Cancer) genes.
Out of these, 9577 and 16176 respectively, were not filtered out by any of the methods (Figure[S7).
Most of the filtered genes (7904 and 30233) were removed by all the methods which indicates that,
in general, there were very few differences among them. The greatest difference was found for the
Wilcoxon test (Prostate Cancer), since there were more than 12000 that were removed by CPM
and edgeR but not by Wilcoxon.

We studied the characteristics of the removed genes that were not in common for the compared
filtering methods by plotting the difference between the mean CPM per condition against the
maximum variability between replicates (Figures and . In general, genes filtered only by
edgeR tended to show higher differences in expression between conditions which is obviously not

10



CPM

Proportion test

oo

edgeR 9577

CPM

Wilcoxon test

i

edgeR 16176

(a) F. oxysporum data

good because genes with potentially significant changes in expression between conditions could
be removed from the analysis. Although these genes generally present a high variability among
replicates and will probably not be declared as differentially expressed by statistical methods, it may
be preferable to leave the decision about these cases to the statistical method instead of filtering

them out of the ulterior analysis.

11

(b) Prostate Cancer data

Figure S7: Number of genes filtered out by each method
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5 Differential expression

5.1 Results on experimental data sets
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Figure S10: Differential expression results from compared methods on F. ozysporum data.
DEGs declared by each method are shown in color.
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Figure S11: Differential expression results from compared methods on human prostate data. The
DEGs declared by each method are shown in color.
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Spearman's rank correlation

Figure S12: Differential expression results from F. oxysporum data. The diagonal contains the
number of DEGs for each method. Above the diagonal, the number of DEGs in common for each
pair of methods is shown. Below the diagonal, the Spearman’s rank correlation coefficient between
FDR or 1-probability for each pair of methods is shown.
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Figure S13: Differential expression results from human prostate cancer data. The diagonal contains
the number of DEGs for each method. Above the diagonal, the number of DEGs in common for
each pair of methods is shown. Below the diagonal, the Spearman’s rank correlation coefficient
between FDR or 1-probability for each pair of methods is shown.
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5.2 Results on simulations
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Figure S14: HIGH biological variability scenario (320 simulations). Sensitivity (left), FDR (middle),
and MCC (right) of differential expression methods according to the number of replicates for an
adjusted p-value cutoff of 0.05 (equivalent to a probability of 0.95 for NOISeqBIO). This cutoff
corresponds to the red horizontal line in FDR plots. Results for all levels of technical noise, DEG
proportions, and number of genes were aggregated.
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Figure S15: LOW biological variability scenario (320 simulations). Sensitivity (left), FDR (middle),
and MCC (right) of differential expression methods according to the number of replicates for an
adjusted p-value cutoff of 0.05 (equivalent to a probability of 0.95 for NOISeqBIO). This cutoff
corresponds to the red horizontal line in FDR plots. Results for all levels of technical noise, DEG
proportions, and number of genes were aggregated.
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Figure S16: Percentage of differentially expressed genes called by each method with regard to the
total number of simulated genes in the HIGH variability scenario,per number of replicates (in rows)
and true percentage of differentially expressed genes simulated (in columns). Grey horizontal line
indicates the true percentage of differentially expressed genes simulated.
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Figure S17: Percentage of differentially expressed genes called by each method with regard to the
total number of simulated genes in the LOW variability scenario,per number of replicates (in rows)
and true percentage of differentially expressed genes simulated (in columns). Grey horizontal line
indicates the true percentage of differentially expressed genes simulated.
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Figure S19: False Positive Rate (FPR) per number of replicates and for each method applied on
simulations with 0 DEGs at 5% significance level. 40 simulations were generated for each number
of replicates. Red horizontal line show the significance level (5%).
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5.3 Visualization of DE results

The NOISeq package also includes a wide variety of plots to visualize DE results that can provide
additional insights for the biological interpretation of the significant gene calls made (Figures
S10 and S11). Please, refer to the package User’s Guide (http://www.bioconductor.org/packages/
release/bioc/html/NOISeq.html) for a detailed explanation of all of these plots. “Expression”
and “(M,D)” plots (Figures and S10a, and and S10b) allow for the detection of any
bias in DEGs, for example, only declaring high or low count genes or genes with a high fold-
change, as DEGs. No biases were observed in our DE results. “Manhattan” plots (Figures S10c
and S11) display the expression level across all the chromosomal positions and indicate up and
down regulated DEGs. In the Prostate Cancer data set (Figure S10c), we observe a region of
extensive gene expression up-regulation on the left arm of Chromosome 1. On the other hand,
the DEG chromosome-break down for the F. oxysporum data set (Figure S11) revealed reduced
gene expression on chromosomes 3,6,14, and 15. Interestingly, these chromosomes have recently
been introduced into the fungal genome suggesting that the observed gene silencing pattern may
reflect an ongoing adaptive process of these chromatin parts. Finally, the package also provides the
biotype or chromosome break-down for DE genes. For example, for the cancer data (Figure S10d),
the biotype plot reveals that although these DEGs are protein-coding genes, there is a relatively
higher proportion of DE non-coding genes than expected from the general genome composition
(solid blue bars are higher than gray bars for these biotypes), suggesting that non-coding RNA
regulatory mechanisms might be specifically activated in this experimental setting.
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(a) Expression plot. (b) (M, D) plot.

Figure S20: Differential Expression plots. Data: F. oxysporum.
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Figure S21: Differential Expression plots. Data: Prostate cancer.
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6 Simulation algorithm

It has been reported that the number of reads mapping to a given gene resembles an over-
dispersed Poisson distribution when considering biological replicates and that one way of modeling
this over-dispersion is by taking the negative binomial distribution. Thus, our simulation algorithm
is based on randomly generating the counts from a negative binomial distribution as done previously
in other studies . Figure shows the outline of the algorithm.

replicates1

Condition 1
Up-regulated
genes

genes

Depth + Noise +

0, ~ N(w,0) [+
Negative binomial (i, 6?) | ———— pf= (udeglg / z pdeglg) * Depth |————»|
o’ = (1+op)

9= (uog + Kg) * ch

l‘ldegl

p, = Unif(u * Noise*.)

Experlmental — § Proportion of total DEG + %DEG up = Unif(0.25; 0.75)
sample g +
FC = Fold-change ~ Beta(a=1.5, f=5)*100 + 1.5
B uo +
K9 =5, for DEG
Randomly ge
generated
= replicates2
Number of genes Condition 2

+
“Power-law” distribution
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9= (uog + Kg) * FCY
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B 9= 9 9
1 (1,,0,) were estimated from Ky = (g’ I T ) * DepER
experimental data sets and
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Down-regulated
genes

Figure S23: Outline of the simulation algorithm

These are the main steps of the simulation algorithm:

1. An initial number of counts per gene (1) is used to simulate the replicates for each condition.
This po determines the proportion of sequencing reads initially assigned to each gene. It
can be either provided by the user or randomly generated from a power-law distribution:
f(z) oc 27, where 0 < < depth/1000 and A = 0.5. Thus, if ngenes is the number of genes
in the simulated data set, ngenes values are randomly generated from this distribution to be
used as the initial counts pg when no experimental samples are provided by the user.

2. The proportion of differentially expressed genes (propdeg) is chosen by the user and is used to
obtain the number of DEGs. The proportion of DEGs that will be up-regulated in condition
1 is generated from the uniform distribution 2/(0.25,0.75), and the rest of the DEGs are
down-regulated in this condition. Genes that are up and down regulated are randomly taken
from the total set of genes.
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3. The number of replicates per condition is given by the parameter nrepl. Each biological
replicate for a given gene and condition is simulated from a negative binomial distribution
with mean p and variance 2. To describe the relationship between the mean and the variance,
the parametrization used in [6] was applied: 02 = u(1 + ¢u). This is how u and o2 are
estimated from the initial counts pg:

e For each condition i (i = 1,2), the mean expression is defined as pf = (uf + K9) x FCY,

for g € DEG, and p = pif, for g ¢ DEG. The fold-change FCY is randomly generated

FC9 —1.
from a Beta distribution: % ~ Beta(a, ), where a = 1.5. By default, 5 = 6,

but it can be modified by the user (see Figure . K9 =5,Vg € DEG. The mean
1; thereby obtained for each condition is adjusted so its sum is equal to the given total
number of counts depth. Finally, in order to allow a certain level of noise in the data
(noise), the final ! is the maximum between 0.1 and a random value from the uniform
distribution U (p; — noise X ;, i + noise x ;). The reason for taking the maximum is
to give any gene with no initial counts some chance to appear.

e To compute the variance o2, we first need to estimate the value of the dispersion param-

eter ¢. We evaluated several experimental data sets with different number of replicates
and biological variability to obtain realistic scenarios of either high or low biological
variability. We followed the estimation procedure described in [§]. For each data set,
only the samples with a total number of counts higher than 10 and the genes with a
mean expression higher than 1 were chosen. Once this filter was applied, the remaining
samples were adjusted so all of them had the same number of counts (depth). With
these normalized data, the mean expression of each gene was computed, which is the
maximum likelihood estimator (MLE) of pu9. The MLE of ¢9 was obtained by maximiz-
ing the log-likelihood function. This was done for each experimental data set and all
the pairs (u9, ¢9) from every data set were pooled. All u values were divided into bins
containing approximately 1000 values each. Figure shows the dependence of ¢9 on
u9 for the scenario of high biological variability. The higher the value of u, the lower
the median and variability of ¢. The mid-point of the bin was computed for each bin of
values, as well as the median and the median absolute deviation (mad) of ¢ values within
the bin. Thus, for each condition ¢, ¢9 is randomly taken from a normal distribution
N(ug,03), where p} = pg(pf) and of = oy(u) are obtained by linear interpolation
from p mid-points and ¢ medians.
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Figure S24: Fold-change is generated randomly from a Beta distribution with shape parameters
a = 1.5 and 8 (which can be modified, by default 8 = 6). The larger the 8 value, the lower the
probability of having high fold-changes.
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Figure S25: Distribution of ¢ values (in log-scale) from experimental data sets with high biological
variability within each bin of p values (containing approximately 1000 values each).
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